Accelerate Sepsis Diagnosis by Seamless Integration of DNA Purification and qPCR

Bang-Ning Hsu, Andrew C. Madison, Richard B. Fair
Department of Electrical and Computer Engineering, Duke University, USA

1. **Sepsis**
 - bloodstream infection
 - 25+ pathogen types
 - delayed/ineffective antimicrobial treatment → high mortality risk

2. **Traditional workflow**
 - turnaround: 6 ~ 10 hr
 - hands-on: 3 hr
 - manual sample transfer between instruments → time wasted

3. **Approach**
 - chemical lysis to qPCR on one chip
 - DNA purification by immiscible phase filtration
 - followed by qPCR prep, qPCR using digital microfluidics
 - multiplex detection: compartment eluent into droplets
 - improved detection limit: small eluent volume → high [DNA] in droplets

4. **Device**
 - top-down view
 - droplets transported by digital microfluidic actuation
 - side view

5. **Preliminary results**
 - immiscible phase purification
 - DNA retention: 47 ~ 88% relative to benchtop protocol
 - purification power
 = [inhibitor in]/[inhibitor out]
 40x lower bound
 10^2 ~ 10^3 x/wash achievable
 - eluent compartmentation
 - eluent from upstream purification stage
 - concentrated dsDNA in droplet:
 2.5 ng/µl = 13 x [DNA in]
 - minimum residual beads

6. **Significance**
 - prior immiscible phase filtration demo: 1 qPCR
 - integration with digital microfluidics:
 - inline auto qPCR prep
 - eluent compartmentation → multiple qPCR

2. Crit. Care 2012, 16, 404
4. Lab Chip 2011, 11, 1747
5. Anal. Chem. 2010, 82, 2310