Integrated Digital Microfluidic Biochips

R.B. Fair Department of Electrical and Computer Engineering Duke University Durham, N.C.

Outline of Presentation

- Background and motivation
 - Integrated disposable microfluidics
 - Integrated microfluidic systems: past and present
- Microfluidic integration issues
 - Architectural choices
 - Integrated detectors
- The digital microfluidic options and examples
 - Implications of droplet architecture
 - Examples of integration
 - Analog/Digital Hybrid Microfluidic Chip For DNA & RNA Analysis
 - Cytotoxicity Screening
 - Protein Crystallization
- Summary and conclusions

Background & Motivation Automation Test tubes Integration **Miniaturization** Robotics Automation **Miniaturization** 0 **Automation** ✓ Integration ? **Microfluidics** Miniaturization 0

Start of the Art Commercial Disposable Microfluidics

BioSite Biochip

ANOTHER EXAMPLE OF A MICROFLUIDIC SYSTEM

LAB-ON A CHIP BIOSITE

DIAGNOSES HEART ATTACK WITHIN 10 MN

Disposable Chip Paradigm

Fluidigm 8.96 Screening Chip

Integrated Fluidic Circuit (IFC)
Reagent Inlets
Containment Accumulator

Protein Inlet
 Hydration Reservoirs
 Interface Accumulator

Concept of Disposable Integration

Application Devices

MICROFLUIDIC

PROCESSING/ANALYSIS

Promise of Biochips

Applications : Biotechnology (eg: high throughput screening , Diagnostics...)

How important is a fully integrated chip?

Historical Electronic/Fluidic Integration

 Trend has been to integrate the fluidics on the electronics

Department of Electrical and Computer Engineering

10

Current Integrated Microfluidic Devices

IC / Microfluidic Hybrid Prototype

Computer Engineering

Hybrid Integration

Semicustom Multi-Chip-Module Implementation

- Pilot key architecture components to access manufacturability
- Microelectrofluidic "printed circuit board"
 - Common footprints device interoperation
 - Precursor to future monolithic "shrink"

Integration Issues

- Can only integrated simple fluidic functions on an IC!
- Option: integrate the electronics on the fluidic platform (Motorola, 2004)

Figure 1. (A) Schematic of the plastic fluidic chip. Pumps 1–3 are electrochemical pumps, and pump 4 is a thermopneumatic pump. (B) Photograph of the integrated device that consists of a plastic fluidic chip, a printed circuit board (PCB), and a Motorola eSensor microarray chip.

Integration Compatibility Issues

Benchtop Laboratory Techniques "Lab on a Chip" Many manual steps Integrated sampling, chemical reactions, mixing, separation, detection, data

Architectural Choices

- Fixed data path (application specific)
- Reconfigurable (multiple applications)
 - Shared elemental operations
 - Microfluidic instruction set
 - Programmable
 - Reusable

Where Are We?

Present Status Summary

- The reality of current lab-on-a-chip technologies...
 - Highly application specific
 - Commercial trend: simple, disposable devices that interface with expensive control boxes
 - Disposable devices may perform limited set of steps
- What is required for a integrated microfluidics?
 - Leverage devices into multiple applications
 - Complexity of diverse applications reduced to a manageable set of fluidic operations
 - Modular architecture gives flexibility of choosing fundamental operations
 - Integrated fluidic I/O
 - Integrated low voltage CMOS control incompatible with current fluidic operating voltages and footprints
 - Detector integration a priority

PCR Integrated System

Woolley, Mathies and Northrup et al., 1996

Cepheid, Sunnyvale CA

Detection Methodology

Integrated Microdisk Sensor

Fig. 1 Schematic of a vertically coupled microdisk resonator showing an input broad linewidth optical signal, and resultant output signal [37]

Fig. 16 Side view of an integrated glucose optical microdisk sensor integrated with an electrowetting chip.

22

Complexity of Diverse Applications Reduced to a Manageable Set of Fluidic Operations

Microfluidic Architecture

- Extensive biomedical analysis technology base needs to be leveraged by expanding integration of microfluidic operations into a complete system
 - Key is integration of sample preparation processes on chip.
 Hybrid integration option possible.
 - Alternative: interfacing to off-chip systems

Digital Microfluidic Toolkit

Implementing numerous applications on a elemental set of components:

Reservoirs droplets Dispensers electrode sets Pumps electrode sets Valves electrode sets Reaction vessels droplets Mixers electrode sets Collection scanning droplet

Integrated Operation - Serial

- Serial protocol
- One glucose assay at a time
- Much simpler
 - Does not require detector multiplexing

Implications of Droplet Architecture

- Droplets allow microfluidic functions to be reduced to a set of basic operations
- Numerous elemental fluidic operations can be accomplished with a common set of elemental components
- Array can be partitioned into "cells" that perform fluidic functions
- Functional cells dynamically reconfigured at least once per clock cycle

Integrated Lab-on-a-Chip Systems

- Digital microfluidic toolkit demonstrated
- Can digital microfluidics deliver a true integrated lab-on-a-chip technology that is adaptable to numerous applications?
- Examples from ECE299 (Duke Univ. Fall 2006/2007)
 - Analog/Digital Hybrid Microfluidic Chip For DNA & RNA Analysis
 - Cytotoxicity Screening
 - Protein Crystallization

Analog/digital hybrid biochip (A. Garcia, G. Pan, J. Zhang)

Fluidic Platform

Floor Plan of the DMW

On-chip Dilution Tree for Cytotoxicity Screening (Y. Zhao, A. Wang, Y. Yamanaka)

Grow cells in 96 well plate

Add various concentrations of compound to be tested to cells

Wait specified length of time

Add Cytotoxicity Assay reagent 1, incubate, add reagent 2

Use plate reader to measure color intensity (proportional to survival)

Previous Work

1. Dispense buffer and compound droplets, mix.

Architecture

1. Dispense buffer and compound droplets, mix.

2. Split. One droplet stays for further dilution, one droplet gets mixed with cells.

3. Dispense cell solution. Optical absorbance check of concentration (optional). Mix with diluted compound droplet.

Architecture

Inputs, Outputs, and On-Chip Function

Inputs

- (1) Cell suspension, (2) Cell media for dilutions, (3) Solution of compound to be tested for cytotoxicity, (4) Reagents for the cytotoxicity assay
- If portable: include Lithium ion battery

On-chip functions

 Create droplets of input liquids, split and mix droplets, incubate droplets for programmed length of time, detect intensity of droplet color or presence of stained cells.

Outputs

Color intensity of droplets or presence of stained cells.

Cell concentration after dispensing

S cerevisiae

Biotechnology and bioengineering, Vol 38, Iss. 9, 1007-1011.

If not in range, send back.

Cytotoxicity assay result

Protein Crystallization on an Array (H. Fang, M. Shafir, T. Xu)

Glucose isomerase crystals on chip – 20×

Proteinase K crystals on chip – 40×

Protein Crystallization

- Major applications of proteins crystallization
 - Structural biology and drug design
 - Bioseparations
 - Controlled drug delivery
- Requires large number of experiments to get the correct parameters for the crystallization of proteins

Fig. 1. Schematic illustration of a protein crystallisation phase diagram.

Integrated Array Chip Layout

42

Implementation

Multi-well-plate

Sample Droplet Splitting and Dilution Scheme

Pin-constrained Design

• 1284 pins \rightarrow 133 pins

Efficient loading of condition solutions

Shuttle-passenger-like well-loading

Department of Electrical and Computer Engineering

2

3

5

Remarks on Applications

- Extensive biomedical application base can leverage microfluidic operations in an electrowetting system.
- Based on:
 - Shared elemental fluidic operations
 - Reconfigurability
 - No cross-contamination
 - Multitasking by components
 - Few bottlenecks.
- Wide diversity of applications can be parsed into manageable components and assembled into a programmable, reconfigurable and reusable architecture.

Summary and Conclusions

- Integration of lab-on-chip microfluidics on IC's may happen at the femtoliter scale (1 μ m)
 - Requires sample in/result out integration
 - High sensitivity detector
- Electrowetting-based digital microfluidics is good candidate for multifunctional microfluidics
 - Programmability
 - Reconfigurability
 - Multifunctional
- Open issues:
 - On-chip sample preparation
 - Lack of a molecular separation method
 - Capillary electrophoresis
 - Accurate on-chip dilution an open issue
 - Scalable, compatible detector technology needed

Acknowledgements

- NSF
- NIH
- DUHS
- ECE299 students

