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• Background and motivation for scaling 

• Development of a scaling model  

– Force balance on droplet 

– Optimum velocity 

• Actuator scaling 

– Threshold voltage 

– Droplet splitting models 

• Static and dynamic  

• Uniform splitting conditions 

– Dispensing 

– Combined effects 

• Actuator voltage limits 

• Picoliter devices 

• Summary and conclusions 

 

Outline of Presentation 
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Promise of Biochips 

• Scaling required for integration on silicon 

• Scaling for parallel biochemical processing 
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EWD Actuator Scaling 

• Scaling parameters: 

– Threshold voltage 

– Splitting voltage 

– Dispensing voltage 

– Optimum droplet velocity 

– Mixing time 

– Maximum safe operating voltage 

• Approach: 

– Develop hydrodynamic-based scaling model 

– Compare scaling model with data 

– Fabrication of scaled picoliter devices 
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Droplet Transport Model 
• Effects considered: 

– Contact angle hysteresis 

– Drag from filler fluid 

– Drag from actuator walls 

– Dynamic actuation forces during transport 

• Models: 

– Lippmann-Young 

– Force balance/unit length over electrodes 

– Beard-Pruppacher filler medium drag model 

– Brochard plate drag model 

– Berthier’s contact angle hysteresis model 
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Droplet Transport Model 

d/L=aspect ratio 
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Scaling Effects on Velocity 

• Model predicts increasing droplet velocity with 

increasing d/L:

• If µd=µo and Cv=6, then U ~ 1/12(d/L + L/d)
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Droplet Transport Scaling 

• Optimum aspect ratio for maximum velocity:

• where Cv is empirical constant in viscous drag 
force:

• Cv=6 for parabolic droplet velocity profile

• If µd=µo, then (d/L)opt =1
– Unconstrained droplet

– No plate shear force
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Aspect Ratio Effect on Transport 
(Pollack) 

d/L~0.2

d/L~0.6
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Scaling Effects on Threshold 

Voltage 
• Threshold voltage from model:

• When U=0, V=VT:

VT ~ {2tγlg/εrεo [sinα (sinθ(VT) + sinθ(0)]}1/2

– where α is amount of contact angle hysteresis

– α =1.5-2o (water in silicone oil); 7-9o (water in air)
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Effect of α and γlg on VT 

AirOil Air after

oil

VTair/VToil~ [(γlg (air)/γlg (oil)]1/2

~ [72.8mN/m/47mN/m]1/2

= 1.24

1.5x
1.7x

VTair/VToil ~ [sinα(air)(sinθ(VT)+sinθo)]
1/2

[sinα(air)(sinθ(VT)+sinθo)]
1/2

~  [sin(7-9o)]1/2/[sin(1.5-2o)]1/2

= 1.9 – 2.5

Pollack 2001:
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Threshold Voltage Scaling 
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Effect of Aspect Ratio on VT 

-Pollack 
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Viscosity Effects on VT 

VT = {2tγlg/εεo [sinα (sinθ(VT) + sinθo)]}
1/2

µd effect: 1.14x µo effect: 1.75x

-Pollack
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Static Splitting Model 

1/R1 = 1/R2 – (cos θb2 – cos θb1)/d  

(Cho et al. 2002)

 

Criteria for static splitting:

For N’ electrodes, the minimum voltage for splitting is:

V2-VT
2 ≈ 4γlg[t(d/L)]/εrεo[1-1/(N’2+1)] 
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Dynamic Splitting Model 
• Link et al model: splitting depends on droplet 

extension eo=lo/πwo  

• Splitting occurs at T-junction when eo>1 

•  [V2 –VT
2] ≈ [2t lg/ εrεo] [0.012d/L+0.002(µd/µo)CvL/d]  
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Splitting: Static vs. Dynamic Models 
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Splitting Model Comparison 

• Static model: 

– splitting voltage increasing linearly with [t/εr(d/L)]1/2 due 

to lower internal pressure at higher aspect ratio 

• Dynamic model: 

– Splitting voltage decreases with [t/εr(d/L)]1/2 due 

reduced plate drag forces 

• Static model and dynamic model agree at d/L=1 

• Data support static model, but splitting depends 

on time sequencing of electrode voltages 
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Uniform Splitting 

 A B

C D
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Variables in Uniform Droplet 

Splitting 

• Aspect ratio, d/L 

• ζlg 

• Electrode shape 

• Time sequencing 

• Initial droplet position 

• Contact angle saturation 

• Electrode voltages 
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Best Splitting Conditions 
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Dispensing 
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•if the aspect ratio is kept constant,

scaling down leads to less linear 

displacement and fast pinch-off.

• large aspect ratio d/R3 is favorable 

(Ren, 2003) 
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Scaled Droplet Dispensing in Oil 
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Dispensing in Oil 
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Mixing 
• Aspect ratio dictates the shape of the 

droplet, which affects mixing times

• Higher ratios result in more spherical 

shapes, lower ratios of more 

cylindrical shapes

Aspect Ratio =
gap height

electrode pitch
Aspect Ratio =

gap height

electrode pitch

Aspect Ratio = 1 : 2.5 Aspect Ratio = 1 : 5

•   Song et al.: mixing by chaotic advection: 

        tmix ~ 1/f log (L2/Df)  
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Mixing 
(Paik-2003) 

0

2

4

6

8

10

12

14

16

0.1 0.2 0.3 0.4 0.5 0.6 0.7

Aspect Ratio (height/width)

T
im

e
 f

o
r 

C
o

m
p

le
te

 M
ix

in
g

 (
s

e
c

o
n

d
s

)

Mixing Times for 4 Electrode Linear Arrays 

thinner thicker optimal 

•16Hz 

•L=1.5mm 

•Vol. adjusted 

 to maintain L 

Restricted flow in droplet 



Department of Electrical and 

Computer Engineering 
27 

Combined Scaling 
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Scaling EWD Actuators 

• Scaling variables: electrode size (L); 

aspect ratio (d/L), insulator thickness (t/εr), 

electrode gap (d)

– Maximum droplet velocity  d/L~1

– Low dispensing voltage  t/εr(d/L) small

– Optimum mixing rate  d/L ~0.4

– Low threshold voltage  d/L>0.2, t/εr small

– Low splitting voltage  t/εr(d/L) small
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EWD Actuator Voltage Limits 

• Lippman-Young equation valid up to Vsat 

• Insulator charge trapping/leakage observed at 

Vsat (Berry et al.; Papathanasiou et al.) 

• Time-dependent VT results: 

 Teflon/Parylene/Oil 

V ≥60V 

Pollack 
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Contact Angle Saturation 

             Vsat = {2γlg/εoε1[t1+ t2 (ε1/ε2)][cosθ(Vsat)-cosθ(0)]}1/2  

where 

 t/εr = t1/ε1 + t2/ε2 t1 

t2 

Pollack’s actuator: 

 - θ(Vsat) = 63o  

 -     θ(0) = 125o  

 - Vsat = 56V (calculated) 

 - Vexp= 60V (measured) 

Lippmann-Young Eq.: 
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Contact Angle Saturation 

120

100

80

60

40

20

0

180

140

160

200

S
a

tu
ra

ti
o

n
 V

o
lt
a
g

e
 (

V
)

[t/εr]
1/2 (µm1/2)

0    0.2  0.4  0.6   0.8  1.0  1.2  1.4  1.6  1.8   2.0

Data: (air medium)

- Cooney (Tef./parylene)

- Welters (Tef./parylene)

- Park (cytop/parylene)

- Papathanasiou (SiO2)

- Baviere (Tef./nitride)

- Moon (Tef./SiO2)

- Moon (Tef./BST)

- Quinn (Teflon)

Air medium
Oil medium

Data: (oil medium)

- Srinivasan (Tef./parylene)

- This study (Tef./parylene)

Vsat = {2γlg/εoε1[t1+ t2 (ε1/ε2)][cosθ(Vsat)-cosθ(0)]}1/2  



Department of Electrical and 

Computer Engineering 
32 

Safe Operating Ranges 
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Reliable 3-Electrode Splitting in 

Silicone Oil and Air 

       Air          Oil 
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Picoliter Droplet Scaling 

• Demonstrated dispensing, actuation, and 

merging/splitting of picoliter droplets 

Dispensing and actuating 35pL droplet (40µm electrodes, 

9.4um gasket height, 70V, 2µm parylene 

Splitting ~100pL droplets (60µm electrode, 

7.5µm gasket, 2um parylene, 80V) 
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35 Picoliter Droplet Dispensing 
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Summary and Conclusions 
• Scaling model developed 

– Useful for determining trends in VT, Vsat, oil vs. air 

– Splitting, dispensing, protrusion all scale with on 
[t/εr(d/L)]1/2  

– With t/εr(d/L) held constant while L is decreased, 
number of dispensing electrodes is constant for 
constant V and VT 

• Reliable EWD actuator operation if V≤ Vsat 

• Oil vs. air filler media 

– Lower VT allows larger reliable safe operating voltages in oil 

– Minimum splitting/dispensing voltages in air may place limits 
on d/L for reliable operation 

– Uniform splitting may test reliable voltage limits 

• Scaling to 5pl demonstrated 
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