Scaling EWD Actuators for Picoliter Applications

R.B. Fair, J.H. Song¹, R.D. Evans, Y-Y Lin, and B-N Hsu

Department of Electrical and Computer Engineering

Duke University

Durham, N.C.

¹Korea Atomic Energy Research Institute

Outline of Presentation

- Background and motivation for scaling
- Development of a scaling model
 - Force balance on droplet
 - Optimum velocity
- Actuator scaling
 - Threshold voltage
 - Droplet splitting models
 - Static and dynamic
 - Uniform splitting conditions
 - Dispensing
 - Combined effects
- Actuator voltage limits
- Picoliter devices
- Summary and conclusions

Promise of Biochips

- Scaling required for integration on silicon
- Scaling for parallel biochemical processing

EWD Actuator Scaling

Scaling parameters:

- Threshold voltage
- Splitting voltage
- Dispensing voltage
- Optimum droplet velocity
- Mixing time
- Maximum safe operating voltage

Approach:

- Develop hydrodynamic-based scaling model
- Compare scaling model with data
- Fabrication of scaled picoliter devices

Droplet Transport Model

Effects considered:

- Contact angle hysteresis
- Drag from filler fluid
- Drag from actuator walls
- Dynamic actuation forces during transport

Models:

- Lippmann-Young
- Force balance/unit length over electrodes
- Beard-Pruppacher filler medium drag model
- Brochard plate drag model
- Berthier's contact angle hysteresis model

Droplet Transport Model

Droplet velocity

d/L=aspect ratio

Scaling Effects on Velocity

 Model predicts increasing droplet velocity with increasing d/L:

$$U = \frac{\sin \phi \{ \cos \alpha \frac{\epsilon_r \epsilon_o V^2}{2t} - \gamma_{lg} \sin \alpha [\sin \theta(V) + \sin \theta(0)] \}}{12\mu_o \frac{d}{L} + 2C_v \frac{\mu_d}{d} L}$$

• If $\mu_d = \mu_o$ and $C_v = 6$, then $U \sim 1/12(d/L + L/d)$

Droplet Transport Scaling

Optimum aspect ratio for maximum velocity:

$$\left(\frac{\mathrm{d}}{\mathrm{L}}\right)_{\mathrm{opt}} = \left(\frac{\mathrm{C}_{\mathrm{v}}\mu_{\mathrm{d}}}{6\mu_{\mathrm{o}}}\right)^{1/2}$$

- C_v=6 for parabolic droplet velocity profile
- If $\mu_d = \mu_o$, then $(d/L)_{opt} = 1$
 - Unconstrained droplet
 - No plate shear force

Aspect Ratio Effect on Transport (Pollack)

Scaling Effects on Threshold Voltage

Threshold voltage from model:

$$U = \frac{\sin\phi \left\{\cos\alpha \frac{\epsilon_{r}\epsilon_{o}V^{2}}{2t} - \gamma_{lg}\sin\alpha \left[\sin\theta(V) + \sin\theta(0)\right]\right\}}{12\mu_{o}\frac{d}{L} + 2C_{v}\frac{\mu_{d}}{d}L}$$

- When U=0, V=V_T: $V_T \sim \{2t\gamma_{lo}/\epsilon_r\epsilon_o \left[\sin\alpha \left(\sin\theta(V_T) + \sin\theta(0)\right]\}^{1/2}\right]$
 - where α is amount of contact angle hysteresis
 - $-\alpha = 1.5-2^{\circ}$ (water in silicone oil); 7-9° (water in air)

Effect of α and γ_{lg} on V_T

Pollack 2001:

 $V_{Tair}/V_{Toil} \sim [(\gamma_{lg} (air)/\gamma_{lg} (oil)]^{1/2} \sim [72.8 \text{mN/m/47mN/m}]^{1/2}$

= 1.24

 $V_{Tair}/V_{Toil} \sim \frac{[\sin\alpha(air)(\sin\theta(V_{T}) + \sin\theta_{o})]^{1/2}}{[\sin\alpha(air)(\sin\theta(V_{T}) + \sin\theta_{o})]^{1/2}}$ $\sim [\sin(7-9^{\circ})]^{1/2}/[\sin(1.5-2^{\circ})]^{1/2}$ = 1.9 - 2.5

Threshold Voltage Scaling

Effect of Aspect Ratio on V_T

Figure 4.8: Effect of varying the gap height on the 10 Hz threshold voltage

Viscosity Effects on V_T

Figure 4.15: Effect of droplet viscosity on 10 Hz threshold voltage

Figure 4.16: Effect of silicone oil viscosity on 10 Hz threshold voltage

$$V_T = {2t\gamma_{lg}/\epsilon\epsilon_o [sinα (sinθ(V_T) + sinθ_o)]}^{1/2}$$
• -Pollack

Static Splitting Model

(Cho et al. 2002)

Criteria for static splitting:

$$1/R_1 = 1/R_2 - (\cos \theta_{b2} - \cos \theta_{b1})/d$$

For N' electrodes, the minimum voltage for splitting is:

$$V^2-V_T^2 \approx 4\gamma_{lg}[t(d/L)]/\epsilon_r\epsilon_o[1-1/(N'^2+1)]$$

Dynamic Splitting Model

- Link et al model: splitting depends on droplet extension $e_o = I_o / \pi w_o$
- Splitting occurs at T-junction when e_o>1
- $[V^2 V_T^2] \approx [2t\gamma_{lg}/\epsilon_r\epsilon_o] [0.012d/L + 0.002(\mu_d/\mu_o)C_vL/d]$

Splitting: Static vs. Dynamic Models

Splitting Model Comparison

- Static model:
 - splitting voltage increasing linearly with $[t/\epsilon_r(d/L)]^{1/2}$ due to lower internal pressure at higher aspect ratio
- Dynamic model:
 - Splitting voltage decreases with [t/ε_r(d/L)]^{1/2} due reduced plate drag forces
- Static model and dynamic model agree at d/L=1
- Data support static model, but splitting depends on time sequencing of electrode voltages

Uniform Splitting

Variables in Uniform Droplet Splitting

- Aspect ratio, d/L
- ζ_{lg}
- Electrode shape
- Time sequencing
- Initial droplet position
- Contact angle saturation
- Electrode voltages

Best Splitting Conditions

 $d/L=0.2, V_T=16V$

Insulator: Teflon/0.5µm parylene C

 $V_{sat} > 50V$

Dispensing

Wetting Electrode Boundary layer

Liquid Front

$$\frac{\varepsilon_0 \varepsilon}{2\gamma_{LM} t d} (V - V_T)^2 > \frac{1}{R_2} - \frac{1}{R_1}$$

•If R1=2mm, R2=250 μ m, d=200 μ , then V_{min} =45V •If R2=250 μ m, d=100 μ m V_{max}=50V, then R1_{max}=2.3mm

$$P_{2} > P_{1} \Rightarrow \frac{1}{r_{2}} - \frac{1}{r_{1}} = \frac{\varepsilon_{0}\varepsilon}{2\gamma_{LM}td}V^{2} > \frac{1}{R_{1}} - \frac{1}{R_{2}}$$

$$\Rightarrow \frac{\varepsilon_{0}\varepsilon}{2\gamma_{LM}t}V^{2} > \frac{d}{R_{1}} + \frac{2d}{(N^{2}+1)R_{3}} \qquad \text{(Ren, 2003)}$$

- •if the aspect ratio is kept constant, scaling down leads to less linear displacement and fast pinch-off.
- large aspect ratio d/R₃ is favorable

Scaled Droplet Dispensing in Oil

$$(V^2-V_T^2)^{1/2} > [8\gamma_{Ig}/\epsilon_o[t/\epsilon_r(d/L)]/(N'^2+1)]^{1/2}$$

 $[t/\epsilon_r(d/L)]^{1/2} (\mu m^{1/2})$

Dispensing in Oil

Mixing

 Aspect ratio dictates the shape of the droplet, which affects mixing times

$$Aspect \ Ratio = \frac{\text{gap height}}{\text{electrode pitch}}$$

 Higher ratios result in more spherical shapes, lower ratios of more cylindrical shapes

Song et al.: mixing by chaotic advection:

$$t_{mix} \sim 1/f \log (L^2/Df)$$

Mixing (Paik-2003)

Mixing Times for 4 Electrode Linear Arrays 16 Time for Complete Mixing (seconds) •16Hz 14 •L=1.5mm Restricted flow in droplet 12 Vol. adjusted to maintain L 10 $\boldsymbol{\theta}_{E}$ Fm = Fd +2 optimal thinner 4 ▶ thicker 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 Aspect Ratio (height/width)

Combined Scaling

Scaling EWD Actuators

- Scaling variables: electrode size (L);
 aspect ratio (d/L), insulator thickness (t/ε_r),
 electrode gap (d)
 - Maximum droplet velocity → d/L~1
 - Low dispensing voltage \rightarrow t/ ϵ_r (d/L) small
 - Optimum mixing rate → d/L ~0.4
 - Low threshold voltage \rightarrow d/L>0.2, t/ε_r small
 - Low splitting voltage \rightarrow t/ ϵ_r (d/L) small

EWD Actuator Voltage Limits

- Lippman-Young equation valid up to V_{sat}
- Insulator charge trapping/leakage observed at V_{sat} (Berry et al.; Papathanasiou et al.)
- Time-dependent V_T results:

Teflon/Parylene/Oil V ≥60V Pollack

Contact Angle Saturation

Lippmann-Young Eq.:

$$V_{sat} = \{2\gamma_{lg}/\epsilon_o\epsilon_1[t_1 + t_2(\epsilon_1/\epsilon_2)][\cos\theta(V_{sat}) - \cos\theta(0)]\}^{1/2}$$

where

$$t/\varepsilon_r = t_1/\varepsilon_1 + t_2/\varepsilon_2$$

Pollack's actuator:

$$- \theta(V_{sat}) = 63^{\circ}$$

$$- \theta(0) = 125^{\circ}$$

Contact Angle Saturation

 $V_{sat} = \{2\gamma_{lg}/\epsilon_o\epsilon_1[t_1 + t_2(\epsilon_1/\epsilon_2)][\cos\theta(V_{sat}) - \cos\theta(0)]\}^{1/2}$

Safe Operating Ranges

Reliable 3-Electrode Splitting in Silicone Oil and Air

Picoliter Droplet Scaling

 Demonstrated dispensing, actuation, and merging/splitting of picoliter droplets

Dispensing and actuating 35pL droplet (40µm electrodes, 9.4um gasket height, 70V, 2µm parylene

Splitting ~100pL droplets (60µm electrode, 7.5µm gasket, 2um parylene, 80V)

35 Picoliter Droplet Dispensing

Summary and Conclusions

- Scaling model developed
 - Useful for determining trends in V_T, V_{sat}, oil vs. air
 - Splitting, dispensing, protrusion all scale with on $[t/\epsilon_r(d/L)]^{1/2}$
 - With t/ε_r(d/L) held constant while L is decreased, number of dispensing electrodes is constant for constant V and V_T
- Reliable EWD actuator operation if V≤ V_{sat}
- Oil vs. air filler media
 - Lower V_T allows larger reliable safe operating voltages in oil
 - Minimum splitting/dispensing voltages in air may place limits on d/L for reliable operation
 - Uniform splitting may test reliable voltage limits
- Scaling to 5pl demonstrated

- NSF
- NIH
- Ministry of Education, Science and Technology of Korea

