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Outline of Presentation

Background and motivation for scaling
Development of a scaling model
— Force balance on droplet
— Optimum velocity
« Actuator scaling
— Threshold voltage
— Droplet splitting models
« Static and dynamic
» Uniform splitting conditions
— Dispensing
— Combined effects
« Actuator voltage limits
* Picoliter devices

« Summary and conclusions
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Promise of Biochips

num, 8T CI

e Scaling required for integration on silicon
« Scaling for parallel biochemical processing
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EWD Actuator Scaling

« Scaling parameters:
— Threshold voltage
— Splitting voltage
— Dispensing voltage
— Optimum droplet velocity
— Mixing time
— Maximum safe operating voltage
« Approach:
— Develop hydrodynamic-based scaling model
— Compare scaling model with data
— Fabrication of scaled picoliter devices
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Droplet Transport Model

« Effects considered:
— Contact angle hysteresis
— Drag from filler fluid
— Drag from actuator walls
— Dynamic actuation forces during transport

« Models:

— Lippmann-Young

— Force balance/unit length over electrodes

— Beard-Pruppacher filler medium drag model
— Brochard plate drag model

— Berthier’s contact angle hysteresis model
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Droplet Transport Model

Droplet velocity
2

sin ¢ { cos a gfng’tv —v,,Sin a [sin B(V)+sin6(0)]}
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Scaling Effects on Velocity

Model predicts increasing droplet velocity with
Increasing d/L.:
2

sin ¢ { cos a 8’82°tv —7,,8in a [sin 6(V)+sin6(0)]}

U=
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If p,=p, and C,=6, then U ~ 1/12(d/L + L/d)
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Droplet Transport Scaling

Optimum aspect ratio for maximum velocity:

where C, is empirical constant in viscous drag

force: F =2C, u,U 2

C,=6 for parabolic droplet velocity profile
If Hg=Ho, then (d/L) 4y =1

— Unconstrained droplet

— No plate shear force
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Aspect Ratio Effect on Transport
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Scaling Effects on Threshold
Voltage

Threshold voltage from model:

2

sin ¢ { cos a ngzc’tv —7,,8in a [sin 6(V)+sin6(0)]}

120 94oc Moy
L d

U=

When U=0, V=V4:
V1 ~ {2ty /€€, [sina (sinB(Vy) + sinB(0)[}/2

— where a is amount of contact angle hysteresis
— a =1.5-2° (water in silicone oil); 7-9° (water in air)
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Effect of a and y,, on V;
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Threshold Voltage Scaling
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Effect of Aspect Ratio on V-
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Figure 4.8: Effect of varying the gap height on the 10 Hz threshold voltage
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Viscosity Effects on V-
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Figure 4.15: Effect of droplet viscosity on 10 Hz threshold voltage Figure 4.16: Effect of silicone o1l viscosity on 10 Hz threshold voltage

V5 = {2ty /eg, [sina (sinB(Vy) + sinB,)[}2
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Static Splitting Model

(Cho et al. 2002)

Criteria for static splitting:

1/R1 = 1/R2 — (cos Opz — cos Op1)/d

For N’ electrodes, the minimum voltage for splitting is:

V2V 2 = 4y, [H(d/L)]/e,go[1-1/(N2+1)]
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Dynamic Splitting Model

« Link et al model: splitting depends on droplet

extension e =l /mw,

 Splitting occurs at T-junction when e_>1
* [V2-Vi4 = 2ty €&, [0.012d/L+0.002(u4/W,)C, L/d]
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Splitting: Static vs. Dynamic Models

Dynamic model
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Splitting Model Comparison

e Static model:

— splitting voltage increasing linearly with [t/ (d/L)]*2 due
to lower internal pressure at higher aspect ratio

* Dynamic model:

— Splitting voltage decreases with [t/ (d/L)]*? due
reduced plate drag forces

« Static model and dynamic model agree at d/L=1

« Data support static model, but splitting depends
on time sequencing of electrode voltages
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Uniform Splitting
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Variables in Uniform Droplet
Splitting

« Aspect ratio, d/L

* CIg

« Electrode shape

« Time sequencing

* Initial droplet position

« Contact angle saturation
« Electrode voltages
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Best Splitting Conditions

d/L=0.2, V=16V
Insulator: Teflon/0.5um parylene C
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Dispensing

Wetting Electrode Boundary layer

Liguid Front
i (V_VT)2>L_i
2y wtd R, R

If R1=2mm, R2=250um,
d=200y, then V,, =45V

If R2=250um, d=100um
V=20V, then R1_ . =2.3mm

Linear displacement
-—
Liquid flow

SN CARVERL B
2yt R, (N2+1)R3

(Ren, 2003)

*if the aspect ratio is kept constant,
scaling down leads to less linear
displacement and fast pinch-off.

» large aspect ratio d/R; is favorable
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Scaled Droplet Dispensing in Ol
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Dispensing in Ol

Dispensing Voltage (V)
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I\/lemg

» Aspect ratio dictates the shape of the
droplet, which affects mixing times

gap height
electrode pitch

Aspect Ratio =

* Higher ratios result in more spherical
shapes, lower ratios of more
cylindrical shapes

: 1 ¥
[ K T
je—— 1.85 mm ——»} je—— 1.85 mm ——»]

* Song et al.: mixing by chaotic advection:
t .. ~ 1/f log (L%/Df)
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Mixing

(Paik-2003)

Time for Complete Mixing (seconds)

Mixing Times for 4 Electrode Linear Arrays
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Combined Scaling
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Scaling EWD Actuators

« Scaling variables: electrode size (L);
aspect ratio (d/L), insulator thickness (t/g,),
electrode gap (d)

— Maximum droplet velocity = d/L~1

— Low dispensing voltage =» t/e(d/L) small

— Optimum mixing rate = d/L ~0.4

— Low threshold voltage =» d/L>0.2, t/e, small
— Low splitting voltage =» t/e (d/L) small
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EWD Actuator Voltage Limits

* Lippman-Young equation valid up to V

 Insulator charge trapping/leakage observed at
V., (Berry et al.; Papathanasiou et al.)

* Time-dependent V; results:

42 : ' ' ' Teron/Parerne/OiI
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Contact Angle Saturation

Lippmann-Young EQ.:
Vsar = {2vig/ectalts+  (€1/€5)][COSO(Vser)-COSB(O)}2

where
t/e, = t,/e, + t/e, t,

Pollack’s actuator:

= O(Vsa) = 63°

0(0) = 125°
- Vo = 56V (calculated)
- Veyp= 60V (measured)
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Contact Angle Saturation

Vear = {21gfEsEalty* T (61/62)l[00S0(V,q)-COSB(O)H2
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Safe Operating Ranges
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Reliable 3-Electrode Splitting In
Silicone Oll and Air
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Picoliter Droplet Scaling

« Demonstrated dispensing, actuation, and
merging/splitting of picoliter droplets

Spllttmg ~100pL droplets (60um electrode,

Dispensing and actuating 35pL droplet (40um electrodes,

9.4um gasket height, 70V, 2um parylene 7.5um gasket, 2um parylene, 80V)

ol T
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35

35 Picoliter Droplet Dispensing
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Summary and Conclusions

« Scaling model developed
— Useful for determining trends in V+, V¢, oil vs. air

— Splitting, dispensing, protrusion all scale with on
[t/ (d/L)]V/2

— With t/e (d/L) held constant while L is decreased,
number of dispensing electrodes is constant for
constant V and V-

* Reliable EWD actuator operation if VsV,
* Oil vs. air filler media
— Lower V; allows larger reliable safe operating voltages in oll
— Minimum splitting/dispensing voltages in air may place limits
on d/L for reliable operation
— Uniform splitting may test reliable voltage limits

« Scaling to 5pl demonstrated
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