Digital Microfluidic Chips for Chemical and Biological Applications

R.B. Fair

Department of Electrical and Computer Engineering Duke University

Durham, N.C., USA

Outline of Presentation

- Background and motivation
 - Digital microfluidics
 - Chip architecture issues
 - Toolkit
- Applications of digital microfluidics
 - Sample preparation
 - DNA sequencing
 - Enzymatic assays
 - Cytotoxicity screening
- Summary and conclusions

Background and Motivation

- The reality of current lab-on-a-chip technologies...
 - Highly application specific
 - Commercial trend: simple, disposable devices that interface with expensive control boxes
 - Disposable devices may perform limited set of steps

• What is required for a diagnostic lab-on-a-chip?

- Leverage devices into multiple applications
- Complexity of diverse applications reduced to a manageable set of fluidic operations
- Modular architecture gives flexibility of choosing fundamental operations
- Top-down design

Digital Microfluidics

Features

- Droplet-based microfluidic devices
 - Droplets are moved in "virtual channels" defined by electrodes
 - Programmable electrodes in an array directly control discrete droplet operations – dispense, transport, mix, split, incubate – to perform any liquid-based test

- Electrowetting
 - Modulation of solid-liquid interfacial tension by the application of an electric field
 - Works with or without a top plate
 - Newly developed coplanar electrowetting method

Digital Microfluidic Toolkit

Implementing numerous applications on a elemental set of components:

Reservoirs \rightarrow droplets Dispensers \rightarrow electrode sets Pumps \rightarrow electrode sets Valves \rightarrow electrode sets Reaction vessels \rightarrow droplets Mixers \rightarrow electrode sets Collection \rightarrow scanning droplet

Diagnostic Lab-on-a-Chip

World to Chip Interface

• well plate interface

- 384 well spacing
- reservoir inputs from microliters to milliliters

High Speed Continuous Droplet Dispensing

STANFORD UNIVERSITY

9

Advanced Liquid Logic, Inc.

35 Picoliter Droplet Dispensing

On-Chip Processing

Clinical Diagnostics

99.63

SERUM

Reference method

25.31

8.79

URINE

Electrowetting

26.67 24.25

SALIVA

107.77

Demonstrated transport of whole blood, plasma, serum, urine, saliva, and sweat.

120

100

80

60

40

20

0

82.56 80.30

PLASMA

Glucose Concentration in mg/dl

Colorimetric glucose assay on Plasma, Serum, Saliva and Urine

Droplet Mixing

- Mixing in ~5 seconds by shuttling on linear array for 1µL (1.5mm scale) droplets
- Shuttling reverses flow causing un-mixing
 - unidirectional motion is preferred
- Scaling down volume decreases mixing time
 - mixing of two 25nL droplets was complete in 0.8 seconds at 10Hz switching @ 50V

Detection Methodology

Reconfigurable Lab-on-a-Chip Status

- Digital microfluidic toolkit demonstrated
 - All fluidic functions demonstrated
 - Lacking molecular separation method
- Commercial prototypes soon available (ALL)
- Examples from current research
 - DNA extraction from blood
 - DNA sequencing by synthesis
 - Enzyme assays
 - Cytotoxicity screening

Microfluidic Operations

How are key operations performed on chip?

Sample preparation (fluidic function)

- Cell lysis
- DNA/RNA extraction
- Purification
- Mixing and transport
- Sample/reagent storage
- PCR (fluidic function)
 - Mixing
 - Temperature cycling
 - Transport
 - Detection

Cell Lysing Area

Red – blood Blue – Rose buffer Yellow – mag. beads In the Cell Lysis Area, Blood will be inputted in 25 nL sized droplets from the blood storage reservoir. This will be mixed with a 5 nL drop of Rose buffer solution which lyses the cells. The end solution will be mixed with a 5 nL drop of magnetic beads. Then a 5 nL drop of solution will be pulled from the lysis area.

Magnetic Bead Washing

One complete wash cycle

1X speed video of first wash cycle

800 wash cycles (condensed to 26 s)

Still images taken after completion of each wash cycle are played at 30 fps

STANFORD UNIVERSITY

Advanced Liquid Logic powered by Digital Microfluidics

On-Chip Pyrosequencing Protocol

Steps involved

- Dispense beads (sample)
- Wash beads
- Add dNTP mix to beads
- Add enzyme mix to beads
- Mix & Detect

Advanced Liquid Logic powered by Digital Microfluidics

Results

 17-bp sequencing of 211-base long C.albicans DNA template with 20-base primer attached

Digital Multiplexed Assay Chip

Multiple Glucose Assays

Kinetic Data - Glucose Assays - 40, 80, 120 mg/dL 0.18 y = 1.49E-03xy = 1.49E-03xv = 1.47E-03x • $R^2 = 0.979$ $R^2 = 0.981$ $R^2 = 0.98$ 0.16 y = 1.10E-03xy = 1.09E-03xv = 1.06E-03x $R^2 = 0.964$ $R^2 = 0.954$ • $R^2 = 0.961$ Absorbance in AU 0.14 v = 6.21E-04x $y = 6.04E-04x_{\odot}$ y = 6.01E-04x $R^2 = 0.892$ 0.12 $R^2 = 0.883$ $R^2 = 0.918$ 0.1 0.08 40mg/dL 120mg/dl 80mg/dL 120mg/dl 80mg/d 40mg/dL 80mg/dL 40mg/dL 120ma/dL 0.06 RUN 1 RUN 2 RUN 3 0.04 0 60 120 180 240 300 360 420 480 540 Data more Time in seconds noisy for 40

- 9 consecutive assays
- 3 glucose concentrations
 - 60 seconds absorbance measurement at same spot

Department of Electrical and Computer Engineering

and 80mg/dL

Cytotoxicity Screening

- Large market: Drug discovery, product testing, experimental research, and more.
- Researchers and companies must determine how their drug or other compound effects cells before animal and human trials can begin.
- Limited supply (1-10 mg) of compound to test, many compounds (up to 1 million) need tested Miniaturization and automation provided by biochips is attractive.

On-chip Dilution Tree for Cytotoxicity Screening (Y. Zhao, A. Wang, Y. Yamanaka)

Grow cells in 96 well plate

Add various concentrations of compound to be tested to cells

Wait specified length of time

Add Cytotoxicity Assay reagent 1, incubate, add reagent 2

Use plate reader to measure color intensity (proportional to survival)

1. Dispense buffer and compound droplets, mix.

Architecture

1. Dispense buffer and compound droplets, mix.

2. Split. One droplet stays for further dilution, one droplet gets mixed with cells.

3. Dispense cell solution. Optical absorbance check of concentration (optional). Mix with diluted compound droplet.

Architecture

Remarks on Applications

- Extensive biomedical application base can leverage microfluidic operations in an electrowetting system.
- Based on:
 - Shared elemental fluidic operations
 - Reconfigurable functional units and programmable control
 - No cross-contamination/wash droplets
 - Multi-tasking
 - Recongfigures around bottlenecks
- Wide diversity of applications can be parsed into manageable components and assembled into a programmable, reconfigurable and reusable architecture.

Summary and Conclusions

- Electrowetting-based digital microfluidics is good candidate for multifunctional microfluidics
 - Programmability
 - Reconfigurability
 - Multifunctional reliable EWD actuator operation if V≤ V_{sat}
- Open issues:
 - On-chip sample preparation
 - Lack of a molecular separation method
 - Capillary electrophoresis
 - Accurate on-chip dilution an open issue
 - Scalable, compatible detector technology needed

