# Parallel Processing Of Multi-Functional, Point-Of-Care Bio-Applications On Electrowetting Chips

R.B. Fair

Department of Electrical and Computer Engineering

**Duke University** 

Durham, N.C.



#### Outline of Presentation

- Drivers for our EWD research:
  - Need for portable, point-of-care (POC) platform for biomolecular detection and disease diagnosis:
  - Requirements:
    - on-chip sample preparation and molecular extraction
    - low I/O
    - parallel or multiplexed operation for throughput
    - on-chip resource sharing
    - scalability
- Technology for parallel assay POC lab-on-a-chip
  - Architectural choices
  - Digital microfluidics
- Summary and conclusions



#### Parallel POC Microfluidic Systems

- Goal: extend the reach of lab-based microfluidics to multiple-assay, POC diagnostic devices
- Approaches to parallel microfluidics:
  - Fixed channels and functions
  - Fixed fluidic functions and programmable fluidic connections
    - Dynamically switchable fluidic connections require many valves
  - Programmable fluidic processors and fixed fluidic connections
    - Dynamically reconfigurable processors need to support numerous fluidic operations with a common set of reusable components
  - Programmable processors and connections and programmable control layer



# Fixed Fluidic Processors and Programmable Fluidic Connections

- Difficult to implement stand-alone, parallel continuous flow automated microfluidic systems for POC applications
  - Need for many valves and external pneumatic control box
  - Difficult to stage samples
  - Need for high I/O ports
  - Requires off-chip sample preparation



# I/O Problem of Fixed Fluidic Processors and Programmable Fluidic Connections

I/O = 80

I/O = 32

I/O = 104







Parallel Reaction Chip (Y. Wang, 2009)

Cytotoxicity Screening Chip (Z. Wang, 2007)

Protein Crystallization Chip (Fluidigm, 2005)

Containment Accumulator



Interface Accumulator

# Programmable Fluidic Processors and Fixed Fluidic Connections

Monarch Microfluidic Architecture

(Duke University – 2000)

- Continuous Flow
- Segregated Processing Units
- Shared Bus Architecture
- I/O to/from outside world
- Pressure driven
- Rigid functional units defined at assembly





# Programmable Processors and Connections and Programmable Control Layer

- Integration on single chip
- Programmable
  - Programmable at electronic control level
  - Fluidic operations performed on "assembled", configured components, not fixed components
    - Requires elemental components that can be assembled under electronic control to perform a fluidic operation
    - Reconfigurable fluidic processors and fluidic connections
  - No molecular cross-contamination of components
    - Reusable components
  - Multitasking
  - Adapts around processing bottlenecks
- Integrated sensing for adaptive behavior



# Road to Microfluidic Programmable Systems

Where are we?





#### Where Are We?

 Programmable electronic control demonstrated



 Multiplexed operation of single and multiple assays demonstrated



 Architectural flexibility demonstrated

 Magnetic bead assays demonstrated





#### Key Elements of EWD Processor

Magnetic bead-based assays with dilutional washing:

 Bead-based assays with replacement washing (phase gate):



## Magnetic Bead Washing



Fluorescence of beads with FAM-labeled primer





#### Reduced I/O



STANFORD UNIVERSITY







### World to Chip Interface



- Well-plate interface
  - Easy and familiar loading
  - 384-well spacing
  - Inputs from microliters to milliliters
- Wash/waste reservoirs support 48+ tests
  - Load and go

STANFORD UNIVERSITY







### **Current Application Drivers**

- Multiplexed DNA sequencing by synthesis
- Bead-based assays
- Cytotoxicity screening
- On-chip sample preparation and DNA extraction
- Malaria detection
- Integrated on-chip sensing







#### Multiplexed Pyrosequencing



#### 4-plex Sequencing Using Decoupled PPi Assay Format



Look-ahead Sequencing With Voting – Beads Don't Pass Magnet





Incorporation and Displacement





#### Split and Mix





Detect C Incorporation, Dispense dCTP





#### Dispense and Mix Luciferase





Detect and Vote, Initiate Sample Chain Wash





Reload Array, Chain Wash Continuation





#### Programmable Parallel POC Chip Status

- Digital microfluidic toolkit demonstrated
  - Many individual fluidic functions demonstrated
  - Multiplexed assays demonstrated with shared on-chip resources and limited cross contamination
    - Multiple enzymatic assays
    - Common sequencing assays run in parallel
    - Magnetic bead washing for sample refresh
    - On-chip sample preparation development underway
    - Reliable I/O achieved
- Parallel multifunctional bio applications for POC
  - Program control capability exists
  - Digital microfluidic chip technology exists
  - Needs to be driven by an application



### Acknowledgements

- NSF
- NIH
- ECE299 students
- Research group at Duke





Advanced Liquid Logic, Inc.

